skip to main content


Search for: All records

Creators/Authors contains: "Thiede, Erik H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many sampling strategies commonly used in molecular dynamics, such as umbrella sampling and alchemical free energy methods, involve sampling from multiple states. The Multistate Bennett Acceptance Ratio (MBAR) formalism is a widely used way of recombining the resulting data. However, the error of the MBAR estimator is not well-understood: previous error analyses of MBAR assumed independent samples. In this work, we derive a central limit theorem for MBAR estimates in the presence of correlated data, further justifying the use of MBAR in practical applications. Moreover, our central limit theorem yields an estimate of the error that can be decomposed into contributions from the individual Markov chains used to sample the states. This gives additional insight into how sampling in each state affects the overall error. We demonstrate our error estimator on an umbrella sampling calculation of the free energy of isomerization of the alanine dipeptide and an alchemical calculation of the hydration free energy of methane. Our numerical results demonstrate that the time required for the Markov chain to decorrelate in individual states can contribute considerably to the total MBAR error, highlighting the importance of accurately addressing the effect of sample correlation. 
    more » « less
    Free, publicly-accessible full text available June 7, 2024
  2. null (Ed.)
  3. The cyanobacterial clock proteins KaiA, KaiB, and KaiC form a powerful system to study the biophysical basis of circadian rhythms, because an in vitro mixture of the three proteins is sufficient to generate a robust ∼24-h rhythm in the phosphorylation of KaiC. The nucleotide-bound states of KaiC critically affect both KaiB binding to the N-terminal domain (CI) and the phosphotransfer reactions that (de)phosphorylate the KaiC C-terminal domain (CII). However, the nucleotide exchange pathways associated with transitions among these states are poorly understood. In this study, we integrate recent advances in molecular dynamics methods to elucidate the structure and energetics of the pathway for Mg·ADP release from the CII domain. We find that nucleotide release is coupled to large-scale conformational changes in the KaiC hexamer. Solvating the nucleotide requires widening the subunit interface leading to the active site, which is linked to extension of the A-loop, a structure implicated in KaiA binding. These results provide a molecular hypothesis for how KaiA acts as a nucleotide exchange factor. In turn, structural parallels between the CI and CII domains suggest a mechanism for allosteric coupling between the domains. We relate our results to structures observed for other hexameric ATPases, which perform diverse functions.

     
    more » « less